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Abstract

A new formulation is presented for the calculation of cepstral coefficients directly from mea-

sured sine wave amplitudes and frequencies of speech waveforms. Approximations to these cepstral

coefficients are shown to be suitable for operation in a real-time speech coding environment. These

results were encoded in the C programming language and then evaluated through experiments that

were conducted on the McAulay-Quatieri Sinusoidal Transform Coder (STC).
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EFFICIENT DERIVATION AND APPROXIMATIONS

OF CEPSTRAL COEFFICIENTS

FOR SPEECH CODING

L Introduction.

Background

The background for this thesis is the human speech process and the importance of speech

processing applications to the United States military.

Human speech is produced by excitation of the vocal tract, which is an acoustic tube that

runs between the lips and the glottis (14:723). In signal processing applications, speech is modeled

by the following linear set of filters representing these characteristics (13:167):

Glottis Vocal Tract

Excitation
Waveform -* 0) I 0.)g Speech

System Function H1(w) = Hg(w)H,(w)

Figure 1.1. Speech Filter Bank.

Speech is a nonstationary signal that originates from the glottis, which produces either a

quasi-periodic pulse train of airflow or a steady stream of airflow (the latter evolves into a noiselike

excitation when the vocal tract is constricted). From the glottis, the airflow moves to the vocal
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tract which imposes information on the glottal output through gestures of the mouth and lips,

resulting in speech (14:724) (16:66).

Military applications which benefit from speech processing include security (speaker identi-

fication and access control), data transmission, and narrow-band communications. Perhaps the

most well-known and wide-spread speech processing application within the military is the STU-III

secure telephone unit, which uses a 2400bps speech coding algorithm to code and encrypt speech

for transmission across a telephone line. As computer networks based on packet-switching technol-

ogy become prevalent within the military, speech processing applications will be used for packet

voice communications, advanced intelligent terminals, and voice control of resources and services

(22:1627-29).

Speech processing areas of interest to the military include speech recognition, speech signal

analysis, and speech coding. This thesis will concentrate on speech coding: the representation of

the output of the human vocal tract in a digital form, and only one of many digital communications

•ysteias cueiitial for military operations. As the requirement for digital communications is ever

increasing, speech and other digital signals must be coded in as efficient form as possible. This is

the impetus behind speech coding: the desire to significantly reduce the storage requirement for

digitized speech signals while still maintaining the quality or the speech. Speech coding is therefore

sometimes referred to as speech compression.

In some speech coding applications, it is desirable only to maintain the intelligibility of the

speech. This is usually true in the case of "canned" recorded messages, like those used in telephone

systems ("This number is no longer in service", etc). In other applications, however, is it desirable

not only to understand what is being said, but to be able to recognize the speaker as well, such

as in the transmission of digital speech over a toll-quality telephone line: the user not only wants

to understand what is being said, but to recognize that Aunt Martha (or whoever) is the speaker.
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This is especially important in secure voice systems: the user likes the extra assurance of being

able to recognize a speaker's voice in order to confirm their identity.

Speech coding is influenced by three main factors: the intelligibility and quality of the en-

coded speech, the bit rate at which the speech is encoded (the amount of storage bits required

for each second of encoded speech), and the computational complexity of the speech coder. It is

desired to maximize the quality of the coded speech while maintaining a low bit rate and a limited

computational complexity within the speech coding algorithm (16:225).

To a large extent, the computational complexity of the speech coder depends upon the al-

gorithm selected. Two main classes of algorithms exist today: those that attempt to reproduce

the original shape of the speech waveform and those that attempt to reproduce the sound of the

original speech without attempting to keep the original waveform shape. The former are referred

to as "waveform encoders" and the latter as "vocoders" (short for voice encoders). This thesis

concentrates on a vocoder developed at MIT Lincoln Laboratories whose algorithm is based on a

sinusoidal model for speech-the representation of the speech waveform as the summation of sine

wavo- of various amplitudes, frequencies, and phases.

Problem Statement

Based on the application of the sinusoidal model of speech to speech coding, consider an

approach to obtain cepstral coefficients directly from the measured sine wave amplitudes and fre-

quencies of digitized speech waveforms.

Research Objectives

Research objectives under this thesis are to study, derive, and implement alternative algo-

rithms to obtain an effective method for computing cepstral coefficients directly from the mea.cured

sine wave amplitudes and frequencies of digitized speech waveforms.
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Research Questions

1. Can a correct algorithm be derived for a direct solution of the cepstral coefficients based on

fitting a cepstral model to the measured speech data?

2. If so, what mathematical approximations to the algorithm may be derived? Which are the

fastest and most efficient algorithms, to enable execution within a real-time environment?

3. What are the results? Does the algorithm or any of the approximations yield reconstructed

speech perceptually equivalent to the original speech?

Definitions

Cepstrum. Cepstrum analysis is a nonlinear signal processing technique which has seen

much success in processing signals such as speech signals, seismic signals, biomedical signals and

sonar signals.

The term cepstrum was coined by J.R. Tukey, and is a play on the word "spectrum", hinting

that the cepstrum is obtained by performing a further spectral analysis on the frequency spectrum.

Work under this thesis is based on A.V. Oppenheim and R.W. Schafer's definition of the

complex cepstrum of a signal, found in (14:770). Here, the complex cepstrum is defined as the

inverse Fourier transform of the logarithm of the system function. Considering the system function

of Figure 1.1, and using the inverse Fourier transform integral in (14:46), the complex cepstrum of

the system function, H,(w), may be written as:

cm = j logH.(w)eJ"mdc (1.1)

where c,m are the cepstral coefficients and j = '/-. This equation is known as the cepstral envelope

equation and is the basis for the cepstral analysis completed in this thesis.
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Frequency Sampling. The frequency content of a signal is measured in hertz (Hz), which

is the number of cycles per second. An intuitive grasp of frequency can be had by considering the

following: A signal whose amplitude varies rapidly between positive and negative values relative

to some average value over a short period of time is a "high frequency" signal. Likewise, a signal

whose amplitude does not vary rapidly with time (stays relatively constant over a short period of

time) is a "low frequency" signal.

The sampling frequency (or sampling rate) of a digital speech signal is the rate at which the

analog (continuous) version of the speech signal is sampled. The sampling period, denoted by A,

is the time duration between which samples are taken, and is the reciprocal of the sampling rate.

If, for instance, a sample of the analog signal is taken every .1 seconds (A = . 1), the sampling rate

is the reciprocal of this period (i-), or 10 samples per second. The sampling rate of a sigial is also

measured in hertz (Hz), and is the number of samples taken per second.

An important theorem which applies to the sampling of analog signals is the Nyquist Sampling

Theorem. This theorem states that for any sampling period, A, there is a particular frequency, f•,

known as the Nyquist critical frequency, given by

1
2A'

If the frequency content of a continuous signal is limited to frequencies less than or equal to f,

then the Nyquist Sampling Theorem states that the continuous signal can be completely determined

from a sampled version of itself with a sampling rate greater than or equal to f, (18:403).

In order to choose an appropriate sampling rate for a particular analog signal, prior knowledge

of the signal's frequency content must therefore be known. For speech signals, the major frequency

components fall below 3000 Hz (19:23). Therefore, in general, a sampling rate greater than twice

this frequency is sufficient for sampling the majority of speech signals. For research conducted

under this thesis, speech signals will be sampled at a rate of 8000 Hz (8 kHz).
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Frequency Warping. Since the human ear is less sensitive to higher frequency sounds

(sounds with a higher pitch), a process called frequency warping, also known as spectral warping,

is often used in speech coding. Frequency warping takes advantage of the human ear's lower

sensitivity to higher frequencies by warping the spectral envelope onto a smaller scale, known most

often as the mel scale.

When a discrete Fourier transform operation is done on a portion of a digitized speech signal,

the resulting spectral envelope is by definition half the length of the discrete Fourier transform

(DFT). For instance, a 1024-point DFT results in a 512-point spectral envelope, corresponding to

"normalized" digital frequencies 0 to 7r. This spectral envelope can itself be sampled in a nonlinear

fashion, so on the resulting warped scale, the number of points of the warped spectral envelope is

less than that of the original spectral envelope.

When warping a spectral envelope, the warped envelope is equivalent to the linear envelope

up until a determined frequency. From that point on, samples of the linear envelope are taken less

and less often, which in effect deletes higher frequency details from the spectral envelope. Since

the human ear is less sensitive to higher frequencies, a warped frequency envelope better matches

the sensitivity of the human ear, and offers the advantage that there is less spectral information to

preserve during the speech coding process.

Real-time Processing. A real-time process can be defined as a process that is accomplished

without creating a delay noticeable to the user (6:1143). Speech coding is frequently a real-time

process. For instance, during a secure telephone call, the coding and encryption of speech for secure

transmission across a telephone line, to be decoded on the receiving end, is a real-time process:

there should not be a noticeable delay between the time of the actual utterance and its deliverance

to the user.

Since speech coding, along with other digital signal processing (DSP) applications, involves

mathematically intensive algorithms, special computer hardware is used to facilitate the mathe-
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matical computations. Today, this hardware is typically contained on a single microcomputer chip

and is commonly referred to as a digital signal processor (DSP chip).

Even with the availability of the DSP chip, the real-time DSP software must be developed as

efficiently as possible: inefficient software will not execute as fast as efficient software. The 90/10

rule of computer science states that 90% of the execution time of a computer program is spent on

the execution of 10% of the code. Since, within STC, cepstral coefficients are computed as often

as every 10 milliseconds, it is a reasonable assumption that for real-time operation, the cepstral

coefficients should be computed as efficiently as possible. This is the goal of this thesis research:

to explore and implement solutions for cepstral coefficients which are efficient and suitable for

real-time processing.

The efficiency of the computation of the cepstral coefficients will be measured by using the

asymptotic notation, known as 0-notation, to describe the order of growth of an algorithm's running

time. Here, the running time or computational complexity of an algorithm refers to the number of

operations executed.

The operations that will be counted in computing the computational complexity are known

as floating point operations (FLOPS). The concept of counting the number of FLOPS came into

being to quantify the work that occurs during computer program execution. C.B. Moler defined a

FLOP as the amount of work associated in executing the statment

s = 8 + aikbj

which includes the effort of doing a floating point add, a floating point multiply, and some sub-

scripting (4:52).
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As an example, consider the following algorithmic structure:

for (i=1; i < N; i++){
for 6j=1; j : N; j++){

statement 1;
statement 2;}}

where statement 1 and statement 2 are FLOPS. If statement 1 takes a constant cl time to

execute and statement 2 takes a constant c2 time to execute during each iteration, the order of

growth of the algorithm could be expressed as cjN 2 + c2N 2 and the computational complexity

would be written as 0((c1 + c2)N 2 ). As N grows large, the constant term becomes less significant

in determining the computational efficiency of an algorithm. Therefore, the constant is frequently

ignored and the computational complexity for this case may be denoted as O(N 2 ). A detailed

review of various asymptotic notations and the analysis of algorithms is found in (2).

Clearly, an algorithm with complexity O(N) is more efficient than one with complexity O(N2 ),

which in turn is more efficient than an algorithm with complexity O(N3 ). These are the three basic

complexities which will be encountered in the algorithms used in this thesis effort. The algorithm

found to yield the best results with the lowest computational complexity will be the algorithm most

favored for real-time implementation within a multi-purpose speech coding environment.

Assumptions

1. Work will be consistent with currently established sinusoidal transform coding techniques

developed at MIT Lincoln Laboratories.

2. Final implementation will be accomplished in the C programming language.

Scope

The work under this thesis includes a mathematical analysis of the derivation of cepstral

coefficients from the measured sine wave amplitudes and frequencies of speech waveforms, and
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the implementation of this analysis into the C programming language. This implementation will

be suitable for compilation into a real-time speech coding system. Various algorithms will be

considered and computational complexity analysis will be accomplished on these algorithms.

Summary of Presentation

Chapter 1 is an introduction to the thesis. Chapter 2 gives an overview of the current literature

pertaining to the speech coder used in this thesis work, and highlights the underlying speech coding

algorithm. Chapter 3 presents the methodology used to solve the problem stated in Section 1.2.

The solution results are detailed in Chapter 4, and Chapter 5 concludes the thesis work.
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IL Background (Literature Review).

Introduction

The speech coder on which the results of this thesis work are accomplished is the Sinusoidal

Transform Coder, developed by Dr. Robert J. McAulay and Dr. Thomas Quatieri of Massachusetts

Institute of Technology (MIT) Lincoln Laboratories. The development of STC. its enhancements

and modifications have been published regularly by IEEE (8-13) and other various publications.

The STC falls into the broad class of signal processing techniques based on the analy-

sis/synthesis of a signal. Figure 2.1 is a high level model of an analysis/synthesis based speech

coder.

SAnalysis coded speech Synthesis Reconstructed
speech System (communications system speech

channel)

Figure 2.1. High level model of analysis-synthesis speech coder.

The analysis system of a speech coder is responsible for extracting parameters that best

represent a stationary portion of the speech waveform. These parameters (which may be quantized,

depending on the application) are then passed through some sort of communications channel (again,

depending on the application) to the synthesis system. Here, the parameters are used to construct

a speech waveform that sounds nearly identical to the original speech (13:168-169).
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The Speech Signal

Figure 2.2 is a typical portion of a speech signal.

OMM60 Oi3PdW WwEWm
0.0 1

0.06

0.04

0.02

-.002

-0.04

.006

-o. I I I I

0 10 20 30 40 50
%W.h w&UM WOMMO

Figure 2.2. Typical portion of a digitized 8kHz speech signal

The characteristic properties of the speech waveform are such that short segments of it exhibit

stationarity and, as such, the speech waveform may be represented as a sum of several sine waves

of different amplitudes, frequencies, and phases. Such an equation may be written as

N

s(t) = E Ak sin(27rfkt + ek) (2.1)
k=1

where Ak is the amplitude of the kih sine wave, fk is the frequency of the kPh sine wave, and Oe is

the phase of the k th sine wave (19:2).

Letting Wk equal 2 lrfk and substituting a cosine wave for the sine wave (with a new phase

4Ok) in (2.1), a similar equation is derived:

N

9(t) = - Ak cos(W t + Ok (2.2)
k=1

Equation (2.2) represents the speech as a sum of cosine waves of various amplitudes, frequencies,

and phases. STC is based on this representation of the speech waveform.
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For this thesis, the distinction between voiced and unvoiced speech needs to be made. For

voiced speech (speech accompanied by phonation-see (16:ch3)), the excitation waveform of Figure

1.1 is a periodic pulse train where the pulses are equally spaced. The separation of the pulses

determines the speaker's pitch. In general, the pulses of the excitation waveform for female speakers

are closer together than that of male speakers, resulting in a higher pitch for females- Speech that

is perfectly voiced can be represented by a sum of harmonic sine waves, with one sine wave per

pitch period. Therefore, female speech will generally be represented by a sum of fewer sine waves

than male speech, since the pitch is of higher frequency and therefore fewer harmonic pitch periods

exist. For unvoiced speech, the excitation waveform of Figure 1.1 is not a periodic signal but rather

a noiselike signal. The underlying sine waves will therefore be aharmonic and will not correspond

to the speaker's pitch. The motivation for the representation of speech as a sum of underlying sine

waves is derived from the harmonic properties of voiced speech (13:167-168).

The Sinusoidal Transform Coder

STC is an analysis-synthesis speech coder which encodes speech based upon the sinusoidal

model described above. On the analysis side of STC, the underlying sine waves are located and their

characteristics encoded for transmission to the synthesis side of STC, where the speech waveform

is reconstructed.

Speech data is processed within STC in "frames", which are quasi-stationary portions of the

speech waveform. The frame size must therefore be chosen so as not to be too large that the speech

signal within the frame changes its periodic shape. STC normally operates at a 20 millisecond

frame rate, which means that each frame contains a 20 millisecond portion of the input speech

waveform. At a sampling rate of 8000 Hz (8000 samples per second), 20 milliseconds is equivalent

to 160 samples of the digitized speech signal:

20 8000 samples = 160 samples.

00seconds second
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The transmission rate of the data crossing the communications channel is measured in bits

per second (bps). The bps rate indicates how many bits of information are sent across the commu-

nications channel per second in order to reconstruct (synthesize) the speech. Transmission rates

vary from 1200-12000bps. At a transmission rate of 4800 bps, 96 bits of information are passed per

each 20 millisecond frame:

4800 bits 20
second x seconds =96 bits

A block diagram of STC is presented at the end of this chapter in order to provide the reader

a broad overview of STC's entire operation. The block diagram is based on the operation of STC

within a real-time environment, with an outer frame size of 20 milliseconds (each outer frame

consists of two inner 10 millisecond frames).

Analysis System of STC

The analysis system of STC is responsible for extracting parameters from each speech frame

and passing these parameters, or coded versions of them, to the synthesis portion of STC (13:168).

The cepstral coefficients are computed within the analysis portion of STC. They are then converted

into channel gains (13:196-197) which are passed to the synthesis system where the speech is

reconstructed.

Pick peaking routine: Obtaining the Amplitudes and Frequencies of the Underlying Sine

Waves. Since the solution of the cepstral coefficients derived under this thesis is based on the

amplitudes and frequencies of the underlying sine waves of the speech waveform, it is appropriate

to discuss how these are derived.

In order to locate the underlying sine wave amplitudes and frequencies, the magnitude spec-

trum (a one-dimensional array structure within STC) is searched incrementally, starting from a

predetermined cutoff (such as 0 Hz) to a predetermined limit (such as 4000 Hz). At each point in
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the spectrum, a check is made for a change in slope: if a point in the discrete spectrum is greater

than its two nearest neighbors, or if a point is equal to one of its neighbors while greater than the

other, then the frequency where that point occurs (a "peak" frequency) is taken to be a frequency of

an underlying sine wave. The amplitude of the magnitude spectrum at that point is the amplitude

of the corresponding sine wave.

Typically, the number of underlying sine waves for 10 milliseconds of speech lies between

15-60, and depends upoli the pitch of the speaker.

The SEEVOC Technique: an Alternative Method for Locating the Underlying Sine Waves.

A technique developed by D.B. Paul of MIT Lincoln Laboratories provides an alternative method of

locating the underlying sine waves of a speech segment that avoids a problem of the straight-forward

peak picking routine described above. The SEEVOC (Spectral Envelope Estimation Vocoder)

technique disregards the low level peaks present in the magnitude of the STFT on the assumption

that these peaks do not indicate the presence of an underlying sine wave but rather are a byproduct

of the windowed Fourier operation, which tends to introduce low amplitude sidelobes (17:787).

The SEEVOC peak-finding technique locates peaks in the STFT magnitude by scanning the

magnitude starting at the fundamental frequency. A interval around the fundamental frequency is

searched for the maximum amplitude; the frequency of that amplitude is taken to be the frequency

of an underlying sine wave. The search interval is then shifted by the speaker's average pitch and

the procedure is repeated until the entire STFT magnitude has been searched. This method ensures

that only one sine wave is located per pitch period, and that any peaks lower than the maximum

peak within a search interval will not be construed as the result of an underlying sine wave (13:383)

(17).
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Current Computation of the Cepstral Coefficients withing STC. The cepstral coefficients

are computed within STC based upon the following equation:

cm = - logA,(w) cos(rw) dw m = 0, 1,... (2.3)

where Cm are the cepstral coefficients and log A.(w) represents the logarithm of the magnitude of

the system function in figure 1.1.

Equation 2.3 is derived from Oppenheim and Schafer's definition of the complex cepstrum

(see Section 1.5.1). The discrete Fourier transform (14:45) of the log of system function H8 (w) is

given by

logH0(W)= C cme-irn. (2.4)
=-_00

Using Euler's identity, the above is equivalent to

00 00

log H,(w) = E Cm cos(mrn) - E Cm sin(rnw). (2.5)

Noting that log H.(w) = log{IH.(w) lei(•)} = log IH.(w)I + j$(w), the following is derived from

equation 2.5:
CO

log IH,(w)I = E cmcos(mw). (2.6)
M=00

Letting A, (w) represent IH, (w)I then the Fourier coefficient cm's of equation 2.6 are given by

Cm = - log A,(w) cos(mw) dw (2.7)
7r1"

which is the same as equation 2.3.
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Within STC, the integral in equation 2.7 is approximated by the rectangular rule summation

Y

Cm = rElogA,(wy)cos(rnwy) m = 0, 1,... (2.8)
Y=1

where Y is the number of points in the magnitude spectrum. The rectangular rule of numerical

integration applied here assumes correctly that the wus (the sampled frequencies) are equally spaced.

Equation 2.8 is computed a total of M times, where M is the number of desired cepstral

coefficients. Equation 2.8 is itself a summation of Y terms. Therefore, the computational complexity

is of O(MY). In STC, A, (w) is an envelope constructed from a linear interpolation of the SEEVOC

peaks (13:183). The formation of the SEEVOC envelope via a linear interpolation technique is

a computationally efficient algorithm of O(Y) complexity. Therefore, the total computational

complexity in constructing the SEEVOC envelope and then computing the cepstral coefficients

based upon this envelope is O(Y) + O(MY).

Parameters passed to Synthesis System

The purpose of the analysis system is to derive values for a minimum set of parameters which

are passed to the synthesis system for reconstruction of the speech signal. Values for the parameters

are passed to the synthesis system for every 20 milliseconds of speech. As derived above, speech

coding at 4800bps of 20 milliseconds of speech allows for 96 bits of information. Within STC, these

bits are normally utilized as follows:

pitch: 14 bits
voicing probability: 4 bits
spectrum envelope: 69 bits
miscellaneous: 9 bits
Total: 96 bits

The majority of the allowed bits are used to code a spectrum envelope, which is derived

directly from the cepstral coefficients. The pitch and voicing probability (whether the speech is
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classified as voiced or unvoiced) were discussed previously in this chapter. Detailed information on

the importance of pitch and voicing probability are available in (16).

Synthesis System of STC

The synthesis portion of the STC constructs a waveform by generating sine waves based on

the parameters passed from the analysis system. The sine waves for each frame are then summed

together to obtain synthetic speech output which is perceptually equivalent to the original speech

(10). The synthesis system of STC is outlined within the STC block diagram at the end of this

chapter.

A good review of the operation of the synthesis system within STC is found in (13). Since

this thesis is not directed toward the synthesis operation of STC, the reader is directed to (13) for

more information.
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Block Diagram of STC

mSTC Initialization Reut es

Beginn oing k . N t a o i s d own apo ined wo s

using a 20 millisecond frame data

A carse lopthesiaeithnd lpdungterstigsetaenlo.

Beginning of Push down pointers to 10 millisecond

anTiysis loop frame data. (The 20 millisecond frame is split
into two 10 millisecond frames for analysis).f

F Read next 10 millisecond speech frame from input file ti
Downsample the speech waveform by 4:1. This essentially reduces the sampling rate from
8000kHz to 20rqkHz. Next. a STFT of this downsampled waveform is computed

using a 60 millisecond Hamming window centered at the center of the current speech frame.
A coarse pitch estimate is then developed using the resulting spectral envelope.

t
SCompute a STFT window length based on the coarse pitch estimate: the new

Hamming window length is set at 2 times the coarse pitch period.r
i

Compute STF C with new window via an FFT routined
This results in the spectrum envelope from which the sine wave
amplitudes and frequencies are derived.

Find the peaks of the STFT magnitude. The frequencies at which these peaksi

occur are the sine wave frequencies; the amplitude of the STFT magnitude ati
these frequencies are the corresponding sine wave amplitudes.

i
[Compute the pitch and vocn probabilities.

i Smooth pitch and voicing probabilities with those of previous frame.

using a 3-point moving average filter.I

4
FCode the pitch and

vo)icing probabilitiesq,

[ rompt ••-! coef",ientsai

Transform cepstral coefficients into channel gains.
An explanation of why this is necessary is found inI
in (13:196-197).
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ofanalysis loop to process firs Istefirsg o second Ir" nillisecond 9frameI

aecond 10 millisecond Kbin processed?

inner frame.

seond

Code the channel gains of the 20 millisecond
envelope.

lSet frame fill control bits. The "frame fill" option is a method to allow transmission of the

channel gains for every second 10 millisecond frame, vice every 10 millisecond frame.
The frame fill control bits are used to instruct the synthesis system how to construct
the missing information from the 10 millisecond frame. Similar options are available for
the pitch and voicing probabilities y a

Write coded data for the 20 millisecond frame of speech to the

c~mmunmications cad&nnel. I

IObtain coded data for next 20 millisecond frame from communications channel.

D ecode the voicing probability, applying frame fill option if used

Smooth voicing probability against chtannel errors./

Decode the pitch, applying frame fill option if used. Smooth the
pitch against channel errors.

Decode the RMS level.
Optionally smooth w/ previous frame.

Decode the average midpoint gain.
Optionally smooth.
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SDecode the 20 mililsecond channel gains and smooth the

channel gains against burst errors.

Convert channel gains to cepstral coefficients.

Synthesize both 10 millisecond frames.

(Alternately use 111 and 2 ,d

10 millisecond frame parameters).

Convert cepstral coefficients to amplitude and phase envelo es.

Simulate higher rate synthesis:
-Interpolate inner frame parameters
-Compute the voicing-adaptive frequencies

-Sample the amplitude and phase envelopes at the voicing-

adaptive.

-High-pass filter the amplitudes and convert to linear scale
-Compute the fake onset time from the sequences of pitch

pulses

-Add in the phases at the sine-wave frequencies
-Synthesize the output waveform using FFT overlap-add

techniques

Push down the pointers to the pitch, voicing, magnitude

and phase envelopes to process next speech frame.

first Was the first or second 10

millisecond frame processed?

second

Write the 20 millisecond speech frame data to the

output medium.

Return to beginning of main loop to process next frame (until EOF is reached).
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IHL Methodology.

Introduction

This chapter provides the methodology for answering the first research question posed for this

thesis: Can a correct algorithm be derived for a direct solution of the cepstral coefficients based on

fitting a cepstral model to the measured speech data?

To answer this question, a correct cepstral model is first presented, based on the cepstral

definition of Chapter 1. The background for this development is found in McAulay and Quatieri

(13) and Oppenheim and Schafer (14). This cepstral model is then fit to the measured speech data,

which consists of amplitudes and frequencies of the underlying cosine waves of digitized speech

waveforms (equation 2.2), resulting in a mathematical solution for the cepstral coefficients.

The second research question posed for this thesis is also discussed in this chapter: What

mathematical approximations to the derived algorithm are possible? Which are the fastest and

most efficient, to enable execution within a real-time environment?

Several mathematical approximations to the cepstral solution are derived in this Chapter, and

their relative complexities and execution times discussed. References are provided for all suggested

aprroximations and suggested implementations within the C programming language.

The results of these efforts are presented in Chapter 4.

Theoretical Background

Referring to Figure 1.1, the system function, H.(w), of the vocal tract filters can be assumed to

be minimum phase (14) and equation 1.1 defines the cepstral envelope. This equation is redisplayed

below for clarity:

cm = • j logH,(w)e"mdw. (3.1)
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The log H,(w) is expanded in Fourier series as follows (14:45):

+00

logH,(w) = E Cme-jMW (3.2)
mn=- 00

where cmn are the cepstral coefficients and j = vCT. Using Euler's identity, this equation becomes:

+00 +00

log H(w) = • Cm cos(mw) - j 1 cm sin(mw). (3.3)
m=-co m=-00

Finally, exploiting the even symmetric properties of the spectrum envelope, equation 3.3 evolves as

00 CO

log H,(w) = co + 2 E Cm cos(mw) - 2j E Cm sin(mW). (3.4)
m•1 m=1

Noting again that log H.(w) = log{IH,(w)ldei()} = log[IH,(w)l] + j$(w) (14), where $(w) is the

phase of the system function, it is observed from the above that the log magnitude of the system

function, also known as the cepstral amplitude envelope (13:181), is

00

log IHs(wui = co + 2 E Cm cos(mw), (3.5)
m= 1

while the phase envelope is

$(w) = -2 E cm sin(mw). (3.6)
m=1

To obtain the cepstral coefficients, the difference between the measured values of the log magnitude

of the speech data being processed by STC and the cepstral amplitude envelope (equation 3.5) must

be minimized. Letting log A(w) represent the log magnitude of the spectrum envelope for the actual

speech data, the problem is to fit the cepstral amplitude envelope (3.5) to log A(w). This can be

accomplished through use of the mean-squared error criterion, which is the average value of the

squared error between two signals. The mean-squared error is appropriate as it is easy to work

with analytically, plus it accentuates large differences while minimizing small differences. This is
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comparable to how the human ear functions: the ear notices large errors in a speech signal but

tends to mask or ignore small errors.

For the problem in question, the mean-squared error may be written as:

f o 2w og A(w)- logI , (w) 1] 2 & (3.7)

where A(w) is the actual measured amplitude of the spectral envelope of the speech data at fre-

quency w and log IH,(w)I is equal to equation 3.5. Substituting equation 3.5 into the above yields

f = - [log A(w) - (co + 2 1 cmcos(mw)) dw. (3.8)
rn=l

To minimize the mean-squared error, a basic law of calculus is employed, which is that a function

of one variable has an extrema (maxima or minima) where its derivative evaluates to zero. Since

equation 3.8 is a function of an infinite number of variables (the variables being the cepstral coeffi-

cients, c0 , cl, ..., coo), the partial derivatives (derivatives with respect to cl, I = 0, 1, ...oo) are used to

determine the extrema of equation 3.8. The partial derivative of equation 3.8 is derived as follows:

j- log A(w) - (co + 2 1 cm cos(mw))J

j 2- [log A(w) - (co + 2 C , cos(MW))12 dw

= j [log A(w) - (co + 2 1 cm cos(mw))] -c [log A(w) - co - 2 E cm cos(mW) dw

m=l rm=l

-- - logA(w)-(co+ 2 E ccos(•.))j (-I1) d w

M=1

- 1j2r 1oAw~ + 2 codwI + 2~ 12,r n~w)

- .ij log A(w) dw+2o

-- 
E m3

- -7 0 cH =log A(w) &w+-.C d + si O cnc0(mw)) •0_

1 12v log A(w) dw +2co +0.
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Setting the resulting equation equal to zero yiels the following for co:

Co = 1 JI logA(w)dw. (3.9)

A similar process is followed in taking the derivative of equation 3.8 with respect to cl, 1 6 0:

0ef - 0e •i 2i
- [a" log A(w) - (co + 2 Cm cos(oW)) dw

, 2rm =1

S 9 [log A(w) - (co + 2 E cm cos(mw)) dw

Cml

2r. [o 10 c cnc csm w) lgAw o m1sM)

[-- log A(w) - (co + 2 E cm cos(mw))] log(1w) - 2

T T ~ T~ ~ E~ cm~n&~) ccosmwjj d

M=1
2 [2wr 2co 2wr 4~ 0.0,

= -2 fjo log A(w) cos(lw)dw + + sin(lw)dw] + 4 Co 12Cos2(lw)dW

- log A(w) cos(lw)dw +[0+ 4c [w + sin(2/w) ].2
T f17 4
2- 2 log A(w) cos(lw)dw + 4cr.

Again, setting the resulting equation equal to zero yields the following for cl, 1 # 0:

Ci=j-] iogA(w) cos(lw)dw 1 = 0, 1,... (3.10)
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Since cos(0) = 1, equations 3.9 and 3.10 are equivalent for k = 0. Therefore, equation 3.10 may be

used to represent the cepstral coefficients, cl, 1 = 0...oo. Note that when the first derivative of a

function is equal to zero, this indicates the presence of either a maxima or a minima.

Minima vs. Maxima

In order to ensure minima values are located, the second partial derivatives of equation 3.7

must be evaluated. This is a more involved task for multivariable equations than for one-variable

equations. In the case under consideration, there are an infinite number of partial derivatives to

consider. The procedures found in (3) may be used to determine whether the cepstral coefficients

result in a local maxima, local minima, or a point of inflection. The base theorem for this problem

is found in (3:194) and states the following regarding the case under consideration:

Theorem 1. Let U be an open set in R.' and f: U -- R a function having continuous second

order partial derivatives. Let cj be a critical point off and let HM(f)(c,) be the Hessian matrix

off and cl.

1. If HM(f)(ci) is positive definite, then cl is a local minimum.

2. If HM(f)(ci) is negative definite, then cl is a local maximum.

3. If HM(f)(cl) is indefinite, then ci is neither a local maximum nor a local minimum.

In the above theorem, f refers to equation 3.7 and cl, (1 = 0, 1 .... ) refers to the cepstral

coefficients. Per the above theorem, the cepstral coefficients will result in local minima if the

Hessian matrix is positive definite. The Hessian matrix may be formed by following the procedures

found in (3:138-140). The Hessian matrix is built from the gradient of f at cl, which is a vector

consisting of the first partial derivatives of f with respect to cl, I = 0, 1...:
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S 2wI logA(w) dw + 2co0,-j logA(w)cos(w)dw + 4ci,-_2 2
logA(w)cos(w)dw + 4e 2 , )

The second order partial derivative of a-, (i = 0, 1, ...), is defined as (•-2L), (i,j 0, 1, ...) and

is commonly denoted by 82. In order to find HM(f), the partial derivatives of ('Tf) are takenOciac,•

with respect to cj, (j 0, 1,...). This process results in the following:

821 02f of
ecoaCo Ocleco Oc2 &C0

&2 f &_2• af

H M (f) Ocoee, ac 18c, 8e2 8c1

O0C8e2 OcOC2  Oc 28c2

Taking the second partial derivatives of (Vf) (equation 3.11) and putting them into matrix form

as above yields the following matrix for HM(f):

2 0 0 ... 0

0 4 0 ... 0

0 0 4 ... 0

0 0 0 ... 4

According to Theorem 1 above, if HM(f) is positive definite, then setting the first partial

derivatives of equation 3.7 equal to zero result in a local minima, as desired. To determine if HtM(f)

is positive definite, the following theorem, found in (21:22), is employed:
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Theorem 2. HM is positive definite if and only if there exists a lower-triangular matrix G with

positive main-diagonal entries, such that HM = GGT.

A diagonal matrix, such as the above, is trivial to factor into the form GGT. For the above,

G is as follows:

V 0 0 ... 0

0 2 0 ... 0

0 0 2 ... 0

0 0 0 ... 2

Since, by theorem 2, HM is positive definite, then by theorem 1, the cepstral coefficients as

computed do result in the desired minimum values for the mean-squared error in equation 3.7.

Application to Speech Coding

Equation 3.10 represents the cepstral coefficients for a continuous spectral envelope; in speech

coding, however, the spectral envelope is not continuous, as the speech waveform from which it is

derived (through a Fourier transform operation) is digitized. Therefore, equations for the cepstral

coefficients must be derived based on a discrete spectral envelope. This is done by discretizing

equation 3.8 as
K M-1

E= [logA4~wk) - co- 2 1: C.. cos(MWk)] 2. (3.11)
k=l m=1

where K is the number of peaks in the spectral envelope of the measured speech data, and M is

the number of cepstral coefficients.

Similar to that encountered in Chapter 2, the rectangular rule of numerical integration is

applied in the above equation with the assumption that the wks are equally spaced. This will

he the rase if the peaks of the STFT magnitude are equally spaced, which only occurs when the

speech is perfectly voiced so the underlying sine waves are harmonic. Thus, development under this
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thesis is based on the properties of perfectly voiced speech; whether the development is adequate

for non-perfectly voiced speech is discussed in the next chapter.

In equation 3.11, the number of peaks of the spectral envelope may be obtained within STC

using the procedures described in Chapter 2, either via the pick peaking technique or the SEEVOC

peak finding technique. Either way, each peak location is taken to define the frequency of an

underlying sine wave of the speech waveform and the amplitude of the spectral envelope at that

frequency is the amplitude of the underlying sine wave. Within STC, a maximum value for K

is established (such as K = 100). The cepstral length, M, is a design parameter which is varied

depending on the coder rate. (13:193). For a data rate of 4800bps, the cepstral length is typically

truncated at 28 cepstral values (M = 28). The length of the cepstral envelope may be truncated

at this relatively low number due to the nature of the cepstral transformation. As mentioned in

Chapter 1, the cepstral envelope results from taking an inverse Fourier transform of the logarithm

of the system function. Referring back to Figure 1.1. H.(w) is equal to H_(w)H,(w). Noting again

that log H,(w) = log[1H,(w)j] + j4b(w), this results in

logH,(w) = logH9 (w)H,,(w)

= log Hg(W) +logH,(w)

= log IH,(w)l +log IH.(w)l + jtg(w) + jt.(w).

Hence,

loglH.(w)j = logiHg(w)i +loglH.(w)j.

In the above equation log IH,(w)I is a slow varying spectral envelope and log IHg(w)I rep-

resents the rapidly-varying pitch-harmonic peaks (16:203). Since the spectral envelope is a slow

varying component, when the further Fourier transform operation is completed, the resulting cep-

stral envelope is contained within the low frequency region. Since the ccpstral envelope is contained
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in this region, the cepstral values may be truncated at a low point within the cepstral envelope

without losing significant information.

The current operation of STC holds the number of cepstral coefficients (denoted as M) fixed

for the entire speech waveform. However, this approach of using a constant value of M will not

work for the algorithm being developed under this thesis. Here, a cepstral model is being fit to the

measured speech data, which consists of amplitudes and frequencies of underlying sine waves. It is

possible that during some speech frames, when M is held constant, for there to be fewer underlying

sine waves than there are cepstral coefficients. When this occurs, there are more cepstral coefficients

than measurements, which mathematically permits an infinity of solutions and which in practice

usually results in unstable solutions (7).

Therefore, a method needs to be determined to calculate a correct, or at least acceptable,

number of cepstral coefficients for each speech frame. Referring back to Chapter 2, the amplitudes

and frequencies of the underlying sine waves may be obtained by either the pick peaking routine or

the SEEVOC peak finding technique. Either way, it seems possible to use the number of peaks in

the STFT magnitude to determine the number of underlying sine waves, and to use this number to

compute an appropriate number of cepstral coefficients. However, with the peak picking routine,

some of the low-level peaks may not be the result of an underlying sine wave but rather be due to

sidelobe leakage (as mentioned previously).

Also discussed in Chapter 2 was the fact that the number of underlying sine waves is based

on the spacing of the pulses of the glottal excitation waveform. During voiced speech, the spacing

is perfectly periodic and the number of harmonic sine waves can be determined by dividing the

pitch by the length of the STFT magnitude. This gives a good estimate of the number of harmonic

sine waves and should be equivalent, or close to, the number of SEEVOC peaks. The number of
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cepstral coefficients could then be set to a percentage of the number of harmonics, ie.,

M = a x #harmonics

As the pitch of the speaker increases, the number of harmonic sine waves decreases. Therefore,

fewer cepstral coefficients are required to code higher-pitch speech.

Acceptable values for a can be found by comparing the original speech waveform with the

output speech waveform, by listening to both waveforms and by comparing various metrics of the

two waveforms. These findings are discussed in Chapter 4.

Returning to equation 3.11, note that this equation does not have a normalization constant

present. Since, for the discrete case, the spectral length is controlled (K points), the normalization

constant may be disgarded without any loss of information. Here, instead of the mean-squared

error, equation 3.11 is more appropriately referred to as a sum-squared error.

As was done when dealing with the continuous spectral envelope, to find the cepstral coef-

ficients that minimize equation 3.11 (discrete envelope), it is necessary to take the derivatives of

equation 3.11 with respect to cl, (Q = 0, .. , M - 1), and set these derivatives equal to 0. Taking the

derivative of equation 3.11 with respect to cl begins as follows:

Of 0K [M-1 ]

49clY [log A(wk) - (co + 2 1: Cr COS(MWk)\k=l Mr=1

K M-1 M-1

E 23 [log A(w,~) - (c,, + 2 : Cmn cos(MWk))] -L [log A(wIk) - (co + 2 1: C.. cos(MWk))J
k=1 m=1 m M=1

For the case I = 0, the derivative results in

K M-1

F Z2[log A(Wk) - co - 2 E Cm cos(MWk)] (1.(.2
k=1 m=1
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Setting the above equation equal to 0 yields the following:

K K M-1

Kco = E logA(wk) - 2 E E cmCOS(nWk). (3.13)
k=1 k=1 m=1

For the cases of I = 1..M - 1, the derivative of equation 3.11 becomes

Oc 2[logA(wk) - co - 2 Cm Cos(MWk)] [-2 cos(iwk)j. (3.14)
k=1 _m=1

Setting equation 3.14 equal to 0 and dividing both sides by -4 results in

K M-1

-- [log A(wk) - co - 2 cm cos(rnWk)] [cos(lwk)]
k---1 M=--1

K K K M-1

E lo E~k co~k}- CO [cos~lWk)] - 2E I Cm cos(MWk) COS(IWk).
k---1 k=1 k=1 m---1

The third term of the above equation is nearly equal to 0 except for the case m = 1, when the term

reduces to 2 "k=1 C cos2 (wk).

For I = 0..M - 1, the resulting equations may be compactly summarized as follows:

M-1 K K

S{-EPm cos(rnWk)COSW) )}Cm = -logA(wk)cos(iwk); 1 = 0,...,M- 1 (3.15)
m=O k=1 k=1

wherePm = /1, m=O{ 2, otherwise.

Solving Bc = y

Equation 3.15 represents a set of M equations in M unknowns (the unknowns being the

cepstral coefficients, co, ... , CM -. 1) and are solvable as a simultaneous set of linear equations. These
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equations are put into matrix form to solve the system Bc = y, where B is a M x M matrix, -Y is

a M x 1 vector, and c is the M x 1 solution vector:

K 2 Eo(~k 2 -*(2.k ).. 2 1: o.((M -'

2 j2 C.4(2.ki) ý.~k . 2 -o((M -1).k) ~(~
Z os(2..hb 2 -o('k.) cas(2..k) 2 cos

2
(2w.,&) .. 2 -. ((M 1 )~.k) -(.,

(302 cos(wk) Co.(3w~t) 2 -~(2.~k) -~(S~h) .. 2 co(.((M - )w,) -o(3ý.k)

co.((AM - 3)2,,) 2 co.(.,) co.((M - 3),k) 2 E -. (2.) co.((M - 3)wk 2 -o.((M - 1),.k,) c-.((M - 3).k)

-co.((M - 2)., ) 2 E eo(.wk) co.((M - 2)..k) 2 E co.(2..) co.(( - 2)w.,) 2 -o.((M - ')..k) co.((M - 2).k)

L- - )(.. ) -0 0 2 o.((.k.) *o.((M - 1)ý.) 2 E co.(2.k) co.((M - ,).. . 2 c°'2(( 4 - I)w" )

CO FKco , -•k=,log A(Wk )

ci E 1 log A(Wk) cos(Wk)

C k= = 1log1(W k)cos(2wk)

CM-1 EK logA(wk)COS((M - 1)wk)

(Note: all summations in the above matrix are k=

After using an appropriate algorithm (such as the Gauss-Jordan routine found in (18:32-37))

to solve this linear set of equations, the solution vector contains the cepstral coefficients which are

used to code the given speech data. When these cepstral coefficients are obtained within STC, the

synthesized speech is found to be nearly identical to the original speech.

Approximations for Real-time Environment

Although good computer solutions for solving the above general matrix equation do exist (the

best known being Gauss-Jordan elimination), the solutions are too computationally intensive to

implement within a real-time environment. The complexity of Gauss-Jordan elimination is on the

order of N 3 operations (the innermost loops of the algorithm are executed N 3 times for a matrix

of size N x N). LU Decomposition is somewhat faster, with the computational complexity on the
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order of 1 N' operations, but this is still too complex for implementation within a real-time system.

Therefore, approximations to the above matrix must be found which allow solutions with a lower

order of computational complexity (on the order of N2 or N operations), while still maintaining a

good quality of reconstructed speech.

Approximations to the B matrix are better considered by employing the following two cosine

identities:

cos2 (a) = -1(1 +cos(2a))

cos(a) cos(13) = I (cos(a - J3)) + (cos(a + i)

Using these identities, and dividing both sides of the matrix equation by K, the matrix equation

Bc = - may be rewritten as follows:
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Tridiagonal Matrix Approximation

By definition, a tridiagonal matrix is one whose elements are zero except on the diagonal

of the matrix plus or minus one column. The B matrix can be simplified to tridiagonal form by

analyzing the individual elements of the matrix. On the interval 0 to 27r, the cosine function has

the following form (figure 3.1):

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2
0 27r

Figure 3.1. Cosine function

From figure 3.1 it is observed that, in general, when the cosine wave is evenly sampled on

the interval 0 to 27r, and the samples are added together, the sum should be approximately 0 (the

positive and negative values in the summation cancel each other). Noting that equation 3.11 is a

numerical approximation to equation 3.7, the fact that the summation should be approximately

zero is shown by evaluating the exact integral upon which it is based. For example, consider the

following B matrix element:

cos(3wk) + coS(Wk).
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This element is an approximation of the following integral:

2j [2r cos(3w) + 1 cos(w)] dw

which is evaluated as follows:

2 1 2 1r[ cos(3w) + cos(w)] cw

= cos(3w) dw + cos(w) dw

= -sin(3w) + sin(w)

Of course, the summations only evaluate to zero when the terms of the summation exactly

cancel each other. But, for approximating the B matrix into a sparse matrix, such as a tridiagonal

matrix, the cosine summations that occur off of the diagonal plus or minus one column may be

approximated to zero.

As such, a tridiagonal approximation of the B matrix may be substituted into the equation

Bc = y as on the following page:
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For tridiagonal systems, solutions exist which require only O(N) operations. A concise so-

lution implemented in the C programming language using LU decomposition, forward- and back-

substitution, is found in (18:47).

There is a formal technique to reduce a symmetric matrix to tridiagonal form, known as the

Householder reduction. The Householder reduction method is explained in both (18:367-374) and

(21:245-251). This technique was developed to find the eigenvalues and eigenvectors of a matrix,

but was investigated as to its application under this thesis research.

Except for a constant factor of 2 which appears in every location of the B matrix except for

those locations in column 1, the B matrix is symmetric. Taking out this constant, the Householder

reduction method can be used to transform the exact matrix into tridiagonal form, a form for

which the cepstral coefficients may be solved for with O(N) complexity. However, the Householder

algorithm is itself of O(4N3) complexity, which negates its value in reducing the computational

requirements in solving for the cepstral coefficients, since the reduction method would have to be

implemented for every speech frame.

Therefore, the only possible benefit of the Householder method to the problem under con-

sideration is if it can be applied to the symbolic form of the B matrix; the resulting tridiagonal

symbolic form could then be used within the coded solution of Bc = -y. There are problems with

this approach. Decisions must be made within the Householder algorithm which depend on the

exact values of the matrix elements (not the symbolic forms of the elements). Also, the iterative

Householder transformation applied to the B matrix on the left-hand side of Bc = Y must be

applied to the vector -y as well. A technique for applying the iterative transformation to the vector

y as it is applied to the B matrix has not been developed. For these reasons, the Householder

reduction method is not applicable to this problem.
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Identity Matrix Approximation

Taking the concept of a tridiagonal matrix further, it is interesting to approximate the B

matrix as an identity matrix. For this case, the identity matrix is denoted as IM and by definition

has all diagonal elements equal to unity and all off-diagonal elements equal to zero. The equation

Bc = y becomes:

K

1 0 0 0 .. 0 co k=logA(wk)

... 0 cl E=llogA(wk)cos(Wk)
1o-..10 0 X c2  =K KlogA(wk)cos(2wLk)

o o 0 0 ... 1 cm-1 -f logA(wk)cos((M-1)wL-)

In this form, cl = -y for all 1. The advantage to this algorithm is that it is very fast and extremely

simple. Only -j needs to be computed and no matrix operations are involved.

Toeplitz Matrix Approximation

Toeplitz matrices occur often in DSP applications, such as in spectral estimation, linear

prediction, autoregressive filter design, and error control codes (1:352). As such, many Toeplitz

algorithms have been developed and it is therefore appropriate to consider a Toeplitz approximation

to the B matrix.
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An N x N Toeplitz matrix is composed of 2N - 1 numbers emplaced as matrix elements

constant along the upper-left to lower-right diagonals of the matrix:

Ro R- 1  R- 2  ... R-N+2 R-N+1

R1  Ro R- 1  ... R-N+3 R-N+2

R2  RI R0  ... R-N+4 R-N+3

RN-2 RN-3 RN-4 ... RO R-1

RN-1 RN-2 RN-3 ... R, RO

A Toeplitz matrix is symmetric if R. = R_, for all z (18:54).

The matrix equation Bc = y using a symmetric Toeplitz approximation of the B matrix

(developed from the first column of matrix B) is as follows:

K Ccs(&wk) ~ cos(2wk) Zcos(3wk) .. *M- 1).k)

E cos(wk) K E cOs(Wk) Ecs(2wk) . cos((M - 2)wk)

1 cos(2wk:) ZCOS(Wk) K >COS(Wk) Co(M- 3)wk)

K Zcos(3wk) Zcos(2wk) ~ COS(Wk) K ... cos((M -4-k

Ecos((M - 1)wk) E cos((M -
2

)wk) Zcos((M - 3)wk) Ecos((M -
4

)wk) K

co EK= log A(wk)

el EKl log A(wk) cos(wk)
__1

C K • Eillog A(Wk)cos(2wk)

K

CM•1 Ek=1 log A(Wk) coS((M - 1)Wk)

(Note: all summations in the above matrix are -=

A common algorithm for solving symmetric Toeplitz problems is the Levinson algorithm,

an iterative algorithm based on the bordering of the matrix. A detailed review of this algorithm
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is offered in (1:353). An implementation of Levenson's algorithms done in the C programming

language is found in (18:58).

Although Levinson's algorithm was designed to solve matrix equations where the matrix

involved is a symmetric Toeplitz matrix, a derivation of this algorithm, by G. Rybicki (18:55), can

solve matrix equations for both symmetric and nonsymmetric Toeplitz matrices. This algorithm is

presented in (18:54-58).

Recently, Chan and Hansen (5) implemented a lookahead Levinson algorithm for solving sym-

metric indefinite and general Toeplitz systesm. Whereas Levinson's algorithm is guaranteed stable

for positive definite Toeplitz systems, Chan and Hansen's implementation is numerically stable for

all Toeplitz systems without "many" consecutive ill-conditioned leading principle submatrices (5).

This implementation is a more sophisticated solution to the Toeplitz problem that provides stability

for a wider class of Toeplitz systems. Within the context of this thesis, the lookahead algorithms

might provide better solutions to the Toeplitz approximation to Be = -Y during periods when B

may become indefinite, perhaps during unvoiced speech.

A nonsymmetric Toeplitz approximation to the B matrix is also developed from the first

column of the B matrix, but as the first column is shifted downward to form the remaining columns,

the shifted element is multiplied by 2, so the following matrix results:

K 2 ECoS(Wk) 2 FCOG(2wk) 2 Tcos(3wk) .. 2 jc*s(M -1.k

F Cas(wk) K 2 Ecos(wk) 2E cos(2wk) .. 2 E c*(M - 2),,k)

i cos(2wk) Z COS(wk) K2cos(wk) 2 F cas((M - 3)Wk)

K Ecos(3wk) Zcos(2wk) E COS(wk) K .. 2ZF cs((M - 4)wk)

Ecos((M - I)wk) E cos((M -
2

)wk) F co.((M -
3 )wk) E cOs((M -

4
)wk) ... K

K

(Note: all summations in the above matrix are k=
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In terms of computational complexity, the Toeplitz solution, requires O(N 2 ) operations. With

Chan and Hansen's lookahead Levinson algorithm, the complexity remains the same if no ill-

conditioned submatrices are encountered. If only one ill-conditioned leading principle submatrix is

encountered, the complexity increases approximately 20% (5:257). The Toeplitz solutions are not

as computationally efficient as the diagonal solutions. However, they are an order of magnitude

more efficient than solving a general matrix equation, which requires O(N 3 ) complexity.

Other Toeplitz approximations are possible. One such possibility is to form the Toeplitz

matrix based on all the data contained in the B matrix, not just the data within the first column

of the B matrix. The algorithm for doing this can best be understood by first reconsidering the

form of a N x N symmetric Toeplitz matrix:

RO R1 R2 ... RN- 2 RN- 1

R 1  Ro R1  ... RN-3 RN-.2

R 2  R 1  Ro ... RN-4 RN-3

RN-2 RN-3 RN-4 ... Ro R 1

RN-1 RN-2 RN-3 ... R1  Ro

and the form of the B matrix:

K 2 E --(-.k) 2ZE .. (2.,) .. .(M- )k

E c.(.k) 2 F, _o2(.k,) 2_Tý* co).(..h) .. 2 -o((M - 1)&)wo "&

F (w) 2 F, -o(.k~) co.(2wk~) 2 1 co.
2
(2,.k) .. 2 Ec..((M - 1)~.k) c~2.

co.(3w -) 2 co.(wk) co.(( -k 2 ) ) ' co.(2, S)o...((.,) ... 2 c..((M - 1).k) co.(( )k)

S€.((M - ),) 2 o.(.k) co.((M - 2) ) •" 2 o.(2 k) co.((M - 2),k ... 2 - A.((M - 1),k) co.((M - 3).k)

. ((Mr- 2)k) •" So(..)o.((M - 2).k) 2 co3.(2 ) -o.((M - 2).k ... 2 -((" - 1).,) co.((M -,k

c.(M- 1).kh) 2 os(w.k) cos((M - 1)w.h) 2 c.(2-k~) .o.(M - 1)-.k) .. 2Zoo.2((Mf - 1.,

(Note: all summations in the above matrix are _k=
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The Toeplitz approximation is based on letting R, equal the average value of all the elements

of the B matrix which correspond to the locations of R, in the Toeplitz matrix (x = 0, 1, ....N- 1).

For instance, Ro would equal the average of all the diagonal elements in the B matrix:

IM

X=1

A computer algorithm for generating this type of Toeplitz matrix is not complicated: the B matrix

is modified so that all the elements corresponding to R. (M elements total) are contained in row

x of the modified B matrix (say B'). Then,

1M

1

The drawback to this approach is the overhead: First, the B matrix must be computed (which

is not necessary in the tridiagonal, identity, or first-column Toeplitz approximations), itself an

O(N2 ) algorithm. The Toeplitz matrix is then formed from a modification to the B matrix, an O(N)

requirement, and finally the Toeplitz system of equations is solved with O(N 2 ) complexity. So, this

Toeplitz system is more than twice as computationally complex as the Toeplitz approximations

where the Toeplitz matrix is based only upon the first column of the B matrix, and is therefore

not appropriate for real-time implementation.

Computing the Cepstral Coefficients Based on a Warped Spectral Envelope

The discussion so far assumes a linear frequency scale for the underlying spectral envelope.

However, as mentioned in Chapter 1, a warped frequency scale holds certain advantages for speech

coding.

Within STC, the warping function parameters for operation at 4800bps typically transform

a 512-point discrete linear spectral envelope into a warped spectral envelope of 293 points.
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Two approaches to applying the discussed methodology on a warped frequency scale are

possible. One option is to warp the entire spectral envelope before obtaining the amplitudes and

frequencies of the underlying sine waves; the underline sine waves are located on the warped spectral

envelope instead. The primary disadvantage of this approach is that some underlying sine waves

may be lost during the warping process, ie., a sample point on the linear scale which is not converted

onto the warped frequency scale may represent a frequency of an underlying sine wave. However,

since the ear is less sensitive to higher frequencies, the loss of a high frequency sine wave may not

be that noticeable within the synthesized speech.

The second approach is to first find the underlying sine waves on the linear scale (K sine

waves per speech frame), then convert each of these "peak" sine wave frequencies onto a warped

scale. This is a straight-forward operation within STC and is completed by accessing the warping

table called "dft.vs-mel". This is a one-dimensional array, with the number of cntries corresponding

to the length of the linear spectral envelope. With a 512-point spectral envelope, mel-vs-dft table

has 512 entries and mel-vs-dft[x] references the location of linear frequency x on the warped (mel)

scale. The advantages of this method are that all the frequencies of the underlying sine waves are

maintained during the warping process, and it is faster, since the entire spectral envelope does not

have to be warped before locating the sine waves. Therefore, this method of spectral warping is

recommended over the previous method.

Equipment and Support

Non-AFIT support for research under this thesis was given by Dr. Robert J. McAulay of

MIT Lincoln Laboratories, who provided much time and assistance with the operation of STC

and the development of the discussed algorithm. In addition, support was provided by Dr. Tim

Anderson of the Biocommunications Laboratory at Wright-Patterson AFB in the use of listening

and recording equipment.

3-24



To assist in the Toeplitz approximation to the cepstral solution, Per Christian Hansen and

Tony Chan provided FORTRAN subroutines for solving Toeplitz systems using the lookahead

Levinson method.

Work under this thesis was completed using SPARCstation 2 workstations provided by Rome

Laboratories (Mr Terrance Champion) and the Air Force Office of Scientific Research (AFOSR, Dr.

Jon Sjogren). All programming was accomplished in the C programming language and compiled

under the C complier available on the SPARCstation 2 systems. Typesetting of the thesis docu-

ment was completed using the laTEX document preparation system. Analog cassette tapes of the

synthesized speech were produced using the Entropic Signal Processing System software package

and cassette recording equipment available at the Biocommunications laboratory, a subdivision of

Armstrong Laboratory, Wright-Patterson AFB, Ohio.

Validatwn of Method

The primary method of validation of the discussed methodologies is to incorporate the dif-

ferent algorithms within STC and utilize listening tests to compare the synthesized speech with

the original speech. Another validation method is to compare plots of the cepstral envelopes of

the discussed methodologies to the cepstral envelopes currently generated within STC. Thc results

of both of these validations are presented in the next chapter. Spectrograms of the reconstructed

speech also serve to validate the algorithm, and are presented in Appendix A.

Summary

This chapter reviewed the methodology for developing an algorithm to solve for the cepstral

coefficients directly from the measured underlying sine wave amplitudes and frequencies of speech

waveforms. A cepstral model, based on the complex cepstrum defined by Oppenheim and Schafer

in (14:770) was fit to the measured speech data by minimizing the difference between the measured
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speech data and the cepstral model. Through a step-by-step mathematical analysis, a compact

solution was realized, as well as possible approximations to the solution which are more compu-

tationally efficient. The results of the solution and its approximations are presented in the next

chapter.
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IV. Findings.

Based on the theory and methodology of the previous chapter, the resulting solutions to the

matrix equation Be = -y were implemented in the C programming language and inserted into the

STC analysis system to compute the cepstral coefficients. This chapter reviews the results of these

implementations.

Findings for Research Questions

In Chapter One, three research questions were proposed for this thesis project:

1. Can a correct algorithm be derived for a direct solution of the cepstral coefficients based on

fitting a cepstral model to the measured speech data?

2. If so, what mathematical approximations to the algorithm may be derived? Which are the

fastest and most efficient, to enable execution within a real-time environment?

3. What are the results? Does the algorithm or any of the approximations yield reconstructed

speech perceptually equivalent to the original speech?

The first question is answered positively. Chapter three reviews in detail the development of an

algorithm to solve for the cepstral coefficients based on fitting a cepstral model to the measured

speech data. In formulating the algorithm, Oppenheim and Schafer's definition of the complex

cepstrum is used to develop the cepstral model. This cepstral model is fit to the actual speech data

using a sum-squared error criterion, resulting in a set of simultaneous linear equations, denoted as

Bc = y, which is solved for the cepstral coefficients.

In answer to question two, three mathematical approximations to the solution of the cepstral

coefficients are found to be possible, based on analyzing the form of the B matrix. The tridiagonal

and identity approximations are based on approximating the cosine summations making up the

clements of the B matrix. The cosine summations are found to tend toward zero off the diagonal
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and approach unity on the diagonal. The Toeplitz approximations result from forming columns

2 through M of the Toeplitz matrix from downward shifted versions of the first column of the B

matrix (the first columns of the B matrix and its Toeplitz forms are identical).

A matrix equation involving an identity matrix may be solved with 0(1) complexity (no ma-

trix opurations are involved). A matrix equation where the matrix is in a tridiagonal form requires

O(N) computations to solve. A matrix equation of a Toeplitz form has O(N 2 ) computational

complexity. All of these forms are computationally cheaper than solving a general matrix equation

(such as the exact solution to Bc = -y), which requires O(N 3 ) complexity.

Quantifying Results

In order to compare the current STC cepstral coefficients and the cepstral coefficients gener-

ated via the methods under this thesis, various metrics are defined to obtain a measurement of the

difference between the two sets of cepstral coefficients.

Both the existing STC cepstral coefficients and the coefficients developed under this thesis

are based on the cepstral amplitude envelope equation (equation 3.5), redisplayed below for clarity:

log IH,(w)I = co + 2 c cm cos(rnw). (4.1)
m= 1

In the above equation, co represents the average level of the cepstral envelope and the cms (m > 0)

determine the shape of the cepstral envelope. In formulating the metrics, let A,(w) represent a

cepstral amplitude envelope developed within the context of this thesis, and A,(w) represent the

cepstral amplitude envelope currently generated within STC.
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The first metric to define is an L-2 distance between the two envelopes. Expressed in dB, the

L-2 norm is developed as follows:

d211 (A. (u)), A,()L~2  = - [120(loglo 2)log2 A,(w) - 20(1oglo 2)log2 A,()1] 2 'j

1 {20(log1 2)}2 j [(co - 6o) + 2 1 (Cm, -_ 6m) cos(Mw)]2 dw

71

[fi CO_ 0) d M-1
= 1{20(1oglo2)} 2  -o)2 d+4 (O- o) E (cm - 6m)cos(mw) dw

7r 0C0 m=i
'" M-1

+4 [-(Cm -m)cos(inw)]2 d
0 ---1

= {20(IOglo 2)}2 (Co -_ o)2 +2 :(Cm -_ m)2]

The L, norm is simpler than the L2 norm, in that the integrand is not raised to the power

of 2, but now the absolute value signs must be taken into account:

di I I(A.(w), A.() [120(log1 0 2) log 2 A, (w) - 20(log1o 2) log 2 A, (w)l] dw

=20(loglo 2)} log2 A,((w) - log2 A,(w) dw

case 1: A.(w) > A,(w)
!{01g 0  f•'- Ml-1

20(loglo 2)} (co - o) +2 E (Cm- 6m) cos(inw) dw
7o 1rM=1

{20(loglo 2)} co - o+- ( - m) sin(0r+)

I.M=1 m

= {20(loglo 2)}(co - 6o)

case 2: A,(w) > A.(w)

2" M-1

-1)20(logo2)} co- o+ 2 7 -E(m M n 6m) OS(mw)]
Im= --1 10

= -{ 2 0(loglo 2)}(co - 6o)
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di I(A.(w), A.(w))IjIi = {20(1ogi 0 2)}Ico - 6o1.

The L, norm is useful in determining the difference between the levels of the cepstral envelope from

STC and the cepstral envelope generated under this thesis.

The final norm to consider is the L•, norm which is defined as

d.II(A.(w),A,w))lI = max 1cm - 6ml,
m

and is the largest difference between corresponding cepstral coefficients of the two envelopes

being compared.

Values for the above differences are indicated in the plots contained in this chapter.

Computing the Number of Cepstral Coefficients

As mentioned in the previous chapter, the current operation of STC holds the number of

cepstral coefficients (M) fixed for the entire speech waveform. This method does not work for

cepstral coefficients obtained under this thesis, which are obtained from the measured amplitudes

and frequencies of the underlying sine waves of the speech data. The number of cepstral coefficients

to compute cannot exceed the number of underlying sine waves, or else a numerically unstable

solution results. As an example of a numerically unstable solution, consider figure 4.1 which

compares a cepstral envelope generated within STC using M = 28 cepstral coefficients and the

envelope generated from the method discussed in this thesis, also with 28 cepstral coefficients.

Clearly, the method under this thesis is unstable in this example since the number of data

points (underlying sine waves) is much less that the number of cepstral coefficients the algorithm

is trying to fit to the data. Figure 4.2 illustrates a stable solution of the same cepstral fit, this time
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using only 16 cepstral coefficients for the cepstral envelope generated via the algorithm developed

under this thesis.

SffMqdbb wit C~IOd 0vdop.
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Figure 4.1. Illustration of an unstable solution of Bc =-y due to the value of M (number of
cepstral coefficients) exceeding the available number of data points (sampled sine
wave frequency locations) within the speech waveform. 28 cepstral coefficients were
used to construct both the STC cepstral envelope and the matrix cepstral envelope.
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Figure 4.2. Illustration of a stable solution of the same cepstral fit as above. Here, the value of
M does not exceed the available number of data points. Only 16 cepstral coefficients
were used to compute the matrix cepstral envelope, vice 28 coefficients for the STC
cepstral envelope.
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The problem is therefore to determine a correct number of cepstral coefficients to compute

based on the available speech data. The algorithm must be computationally simple, so as not to

"undo" the computational benefits of the fast matrix approximations to the cepstral solutions.

Discussed in Chapter 3 is a simple equation for obtaining the number of cepstral coefficients,

based on the nice properties of voiced speech, during which the underlying sine waves are harmonic

and result in one underlying sine wave per pitch period. Using this property as a basis, the number

of cepstral coefficients can be computed as

M = a x #harmonics

where a is an adjustment factor to the number of harmonics. In general, as the pitch of the speaker

increases, the number of harmonic sine waves decreases. Therefore, fewer cepstral coefficients are

required to code higher-pitched speech.

Based on listening tests and comparing metrics of the synthesized speech using various values

for a on utterances by both male and female speakers, a was found to decrease as the pitch increased.

When a is set too high, "burst"-like noises within the reconstructed speech result. When a is too

low, the speech is slurred.

Through listening tests and metric comparisons, a table for computing an adequate number

of cepstral coefficients is developed as follows (table 4.1):
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Table 4.1. Corresponding Number of Cepstral Coefficients (Order Cepstral) for Speaker Pitch.
Speaker Pitch (Hz) Order Cepstral

Pitch < 70 28
70 < Pitch < 80 27
80 < Pitch < 90 26
90 < Pitch < 130 23

130 < Pitch < 140 22
140 < Pitch < 150 21
150 < Pitch < 160 20
160 < Pitch < 170 18
170 < Pitch < 180 17
180 < Pitch < 200 16
200 < Pitch < 210 15
210 < Pitch < 230 14
230 < Pitch < 240 13
240 < Pitch < 270 12
270 < Pitch < 300 11

Pitch > 270 10

Sample table for computing an acceptable order cepstral (M) for cepstral coefficients computed
using the exact matrix equation Bc = -. Tables for the Toeplitz, tridiagonal, and identity approx-
imations differ slightly in order to maximize the reconstructed speech from the specific approxima-
tion. Also, during unvoiced speech, the number of cepstral coefficients may be set slightly slower
than indicated in the table in order to prevent instablitities from occuring.

4-7



Results

As discussed in the previous two chapters, two alternatives are available to determine the

amplitudes and frequencies of the underlying sine waves of speech waveforms: the straight-forward

peak-picking algorithm and the SEEVOC technique. Based on metric comparisons and informal

listening tests, the sine waves obtained using the SEEVOC technique yield cepstral coefficients

which result in better fitting cepstral envelopes that the sine waves obtained via the peak-picking

method. This is an understandable result as the peak-picking method takes into account low-level

peaks within the STFT magnitude which are more than likely a function of the windowed-Fourier

operation rather than an indication of an underlying sine wave (17:787). For the results presented

in this section, the SEEVOC technique was used to obtain the sine wave information of the speech

waveforms.

The Exact System. As expected, speech synthesized using the exact matrix represents a

very close approximation to the original speech. However, the computational time is considerable.

First, the B matrix must be computed (an O(KM 2) requirement), then the equation Bc = Y must

be solved, which requires O(M 3 ) complexity. The success of the exact system is highly dependent

on the number of cepstral coefficients computed, especially in the case of high-pitched utterances

(usually the case with female speakers). When the number of cepstral coefficients to solve for

during each frame of speech is computed using the method described in the previous section, the

reconstructed speech is nearly identical to the original speech. However, if the number of cepstral

coefficients is set constant through the analysis-synthesis of the entire utterance, the reconstructed

speech frequently contains "burst-like" noises.

The following set of plots compare cepstral envelopes generated via this method and cepstral

envelopes generated currently within STC. The pitch and voicing probabilities are noted within the

plots.

4-8



60 3mama=&of WWsdWM

0.08

0.06

0.04

0,02

-.002

-0.06

-00830 -20 -10 0 10.2 30
Spc -aea W~b006In0

SImff d~nda. iEfVOC d. P..kAýVq4*.d..iPq..~da

s0

60

20

10 vid 1837H

202

1IF Phc w-1 Cq8d bvd

70 
SMC S - -

60 I

j 40 V

30

20

Oda 08PO' -23
10 L-2N= -23'100

L. Ným .0.0

0 -f~ %00621
0 0.3 1 33 2 2-3 3 3.3 4

02m

Figure 4.3. Comparison of cepstral envelope generated from an exact matrix computation with
frequency warping on male sentence mmncm.si1089 (from TIMIT), and the same cep-
stral fit generated via STG. The matrix cepstral envelope was computed with 23
coefficients, vice 28 coefficients for the STC envelope.
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Figure 4.4. Comparison of cepstral envelope generated from an exact matrix computation with
frequency warping on female sentence fcmm.si453 (from TIMIT), and the same cep-
stral fit generated via STC. Only 16 cepstral coefficients were used to compute the ma-
trix cepetral envelope; the STC cepstral envelope was computed with 28 coefficients.
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Toeplitz Approximations. The Toeplitz approximations to the matrix equation Bc - y

yield reconstructed speech that is nearly identical in sound to the original speech waveform: an

untrained listener may not be able to tell the difference. This is an understandable result since

the Toeplitz matrix is not a sparse matrix and the cosine summations within the Toeplitz form

approximate those in the B matrix, without setting the summations of the diagonal equal to zero,

as is done with the diagonal approximations.

Three Toeplitz approximations were considered: a symmetric form, a nonsymmetric form,

and a form constructed by averaging the values over the entire B matrix. Since the latter form

requires over twice the computational complexity as the former forms (and since informal listening

tests did not indicate any improvement in the synthesized speech using the latter Toeplitz form),

this form is not deemed a candidate for real-time implementation.

Infcrmal listening tests of speech synthesized using the symmetric and nonsymmetric Toeplitz

approximations to Bc = -r to compute the cepstral coefficients indicate the symmetric Toeplitz

matrix seems to offer a better reconstruction of the original speech.

The next set of plots compare the STC cepstral envelope with the cepstral envelopes generated

from the symmetric and nonsymmetric Toeplitz systems.
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Figure 4.6. Comparison of cepstral envelope generated from a symmetric Toeplitz matrix compu-

tation with frequency warping on male sentence mmcm.si1089, and the same cepstral
fit generated via STC. The L-2, L-1, and L-infinity norms measure slightly higher
distances between these cepstral envelopes than they do between the STC and exact
matrix cepstral envelopes.
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Diagonal Approximations The tridiagonal and identity approximations to the matrix equa-

tion Bc = -/ yield speech that is understandable but that clearly does not sound identical to the

original digitized speech signal. These results are not surprising as both of these forms severely

alter the original B matrix by approximating the cosine summations off of the diagonal entries to

zero. In the identity case, a matrix entries are not even computed: the cepstral coefficient Cm is

equivalent to -,n.

As explained in the previous chapter, there is valid reasoning behind these approximations: a

mathematical analysis shows the cosine summations off the diagonal should approach zero (at least

for perfectly voiced speech). But, by setting them all equal to zero and solving for the cepstral

coefficients, enough sine wave frequency information is lost to cause the synthesized speech to be

clearly distorted from the original.

The next set of plots compare the cepstral envelope as computed within STC using the proce-

dure described in section 2.4.1 with the cepstral envelope generated by a tridiagonal approximation

to Bc = y. The differences in the two envelopes visually explain the distortions present in speech

reconstructed using the tridiagonal matrix system.
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The next set of plots illustrate the differences between the STC cepstral envelope and the

identity approximation to Bc = 7. As with the tridiagonal case, the differences visually explain

the distortions present in the speech reconstructed using the identity system.
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Even though distortions are present in the reconstructed speech using these diagonal approx-

imations, the speech is clearly understandable and not unpleasant sounding, and therefore these

approximations may be useful within real-time speech coding systems which require that the re-

constructed signal only be intelligible, and not perceptually equivalent to the orignal speech. These

algorithms are the most computationally efficient of those discussed.

Unvoiced Speech. As mentioned in Chapter 3, the algorithm developed under this thesis

is based on the assumption that voiced speech is being processed, thereby resulting in a series

of harmonic underlying sine waves for the speech waveform. The harmonic properties of the sine

waves ensure that the STFT magnitude is being sampled at equally spaced intervals during the peak

finding algorithm. However, in order for the algorithm to be valuable, it must be sufficient to process

unvoiced speech as well. Below are cepstral plots of an unvoiced speech segment demonstrating that

the algorithm is sufficient even when the underlying sine waves are aharmonic. Informal listening

tests and the spectrograms of Appendix A also verify the algorithm's sufficiency for processing

unvoiced speech.
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Summary

Based on both visual and audio results of the methodology presented in the previous chap-

ter, the solution for the cepstral coefficients based on fitting the underlying sine wave amplitudes

and frequencies to a cepstral model is a valid solution. Furthermore, the form of the solution

(a set of simultaneous linear equations denoted as Bc = -y) has nice properties which allow it to

be approximated with less computationally expensive solutions. Three approximations were in-

vestigated: Toeplitz, tridiagonal, and identity forms. The Toeplitz forms offer reconstruction of

the original speech comparable to that of the exact solution, with a much lower computational

cost. Since Toeplitz systems occur often in DSP applications, and DSP applications are frequently

implemented as real-time processes, fast solutions to Toeplitz systems have been developed (1) (18).

The method currently used within STC to compute the cepstral coefficients is correct in its

computational accuracy. The value of the algorithm developed under this thesis is therefore not

only its computational accuracy but its computational efficiency as well: the algorithm must not

only be valid, but must be more computationally efficient than the current STC algorithm, in order

to improve STC's real-time implementation.

As mentioned in Chapter 2, the computationally efficiency of the current STC algorithm is

of O(Y) + O(MY) where Y is the length of the discrete STFT magnitude spectrum and M is

the number of cepstral coefficients. For a 512-point spectrum envelope represented by 28 cepstral

coefficients, the computationally complexity is approximately 14,800 FLOPS per cepstral envelope.

For the Toeplitz approximation under this thesis, the computational complexity is O(M 2) for

the solution to Bc = -y and O(MK) for both the building of the Toeplitz matrix and the building

of the -y vector, for a total computational complexity of 0(2MK) + O(M 2 ). Under this algorithm,

the number of cepstral coefficients computed (M) can vary between 10 and 28 coefficients for

each inner 10 millisecond speech frame, depending on the speaker's pitch. The number of sine

waves (K) for each speech frame usually varies between 15 and 60. Therefore, the computational
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complexity lies approximately between 400 and 4,200 FLOPS per cepstral envelope. A tridiagonal

approximation to Bc = y is of 0(3MK + M): 0(2MK) for the contruction of B; O(MK) for

the construction of -; and O(M) for the system solution. A tridiagonal approximation requires

approximately between 460 and 5,000 FLOPS per cepstral envelope, while an identity solution

(involving only the computation of -y) requires approximately between 150 and 1700 FLOPS per

envelope. The evaluations of the cosine operations and logarithmic functions are not taken into

account in computing the number of FLOPS. It is assumed cosinc look-up tables such as those

present within STC are used for the cosine operations. The necessary logarithmic function is

approximated in both instances by a method more efficient for real-time implementation and already

in-place within STC.

The FLOP counts of both the current STC implementation and the approximations of Bc = 7

indicate a significant computational savings for the Toeplitz, tridiagonal, and identity approxima-

tions to Bc = 7.

Speech synthesized using the tridiagonal and identity approximations is clearly not identical

to the original digitized speech signal, but the speech is understandable and may therefore prove

useful for real-time environments that do not require speaker recognition or identification. However,

speech synthesized using the Toeplitz approximation is nearly identical to the original speech (with

only minimal speech degradation, usually during unvoiced speech segments) and is therefore a valid

candidate for implementation within a multi-purpose real-time speech coding environment.
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V. Conclusions and Recommendations.

Research Question One Conclusions

A correct solution to the cepstral coefficients based on fitting a cepstral model to the measured

speech data can be developed. The derivation is developed in Chapter 3 and the results presented

in Chapter 4. The solution is based on a mathematical analysis using proven and widely accepted

DSP ideas and techniques, including Oppenheim and Schafer's complex cepstral model and the

mean- and sum-squared error criterions. Basic laws of calculus are also employed. The result is

a simultaneous set of linear equations whose solution is the cepstral coefficients for the measured

speech data.

This solution is particularly nice as matrices are very common in DSP and other mathematical

and scientific applications, and efficient algorithms have been developed to solve matrix equations,

like those arising within this thesis solution.

Research Question Two Conclusions

Three mathematical approximations to the solution for the cepstral coefficients are realized.

The tridiagonal and identity approximations are found to be the fastest and most efficient ap-

proximations of the B matrix. When using these approximations to solve for the cepstral coefficients

within STC, the reconstructed speech, although understandable, is not perceptually equivalent to

the original speech. However, these computationally efficient algorithms may prove useful in a

speech coding environment that does not require speaker recognition or identification.

As mentioned in the previous chapter, the Toeplitz approximation to Bc = Y yields the

most promising cepstral coefficients at a reasonable computational cost. Two forms of the Toeplitz

matrix are possible for implementation within a real-time environment: a symmetric matrix and

a nonsymmetric matrix. Both of these are solvable using the Levinson algorithm found in (18:54-

58), and versions of the lookahead Levinson algorithm discussed in (5). The lookahead Levinson
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algorithm is a more sophisticated algorithm than the general Levinson algorithm, and is able to solve

a large class of Toeplitz systems, at a higher computational cost if any ill-conditioned submatrices

occur. However, no ill-conditioned submatrices have been encountered in experiments conducted

to date using Toeplitz approximations to Bc = -.

Research Question Three Conclusions

The results of the implementation of the derived solution and its approximations are promis-

ing. For the exact solution and its Toeplitz approximation, reconstructed speech sounds nearly

identical to the original speech kwith only nmnimal speech degradation, usually during unvoiced

speech segments). Since the Toeplitz solution is an order of magnitude faster than the exact so-

lution, it is the best candidate for real-time implementation within a multi-purpose speech-coding

environment. The Toeplitz solution is also less computationally complex than the solution currently

implemented within STC. The tridiagonal and identity solutions may prove useful within a real-

time speech coding environment that only requires intelligibility and not perceptual equivalence to

the original speech signal.

Summary

Progress within speech processing technology, including speech coding, directly supports the

military applications described at the beginning of this thesis (22). In particular, STC (developed

under Air Force sponsorship) is applicable in such military requirements as security, digital data

transmission, the processing of distorted speech, the processing of other sounds such as music and

underwater noises, and various narrow-band communications requirements (8-13). Military speech

requirements are most often required to be completed within real-time.

This thesis considered an algorithm to speed the computation of cepstral coefficients for speech

coding. The algorithm was successfully developed based on current speech coding practices and
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the utilization of proven DSP techniques, and implemented within an existing operational speech

coding system (STC). Due to the low computational complexity, the algorithm's approximations

are definite candidates for implementation within real-time speech coding systems. The Toeplitz

approximation to the algorithm offers a unique advantage to speech coding systems: it is a compu-

tationally efficient algorithm which can maintain a good quality of speech at the same (or perhaps

lower) bit rate.

Iterative improvements to the solution for the cepstral coefficients derived within this thesis

can continue to be made, such as optimizing the algorithm for faster computational throughput

as computer technology advances, and optimizing the results of the approximations for specific

applications.
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Appendix A.

This Appendix contains wide-band spectrograms of speech files synthesized using the McAulay-

Quatieri Sinusoidal Transform Coder (STC), with the cepstral coefficients computed using the

methods developed in this thesis.

Spectrograms offer a graphic view of the speech signal's frequency content versus time, with

frequency on the vertical axis and time on the horizontal axis. The intensity of a frequency compo-

nent at a particular time within the speech signal corresponds to the darkness of the corresponding

spot within the spectrogram (16:100).

Within the spectrograms, the spacing of the vertical striations give an indication of the

speakers pitch. The vertical striations are closer together for higher-pitched speakers than for

lower-pitched speakers (14:726) (16:101) . It is seen from the spectrograms here that a speaker's

pitch varies throughout an utterance, which explains why a variable order cepstral is needed within

the cepstral algorithms developed under this thesis.

The dark horizontal bars that appear in the spectrograms denote the resonance frequencies

of the vocal tract, which also vary with time throughout a speaker's utterance (14:726).

The spectrograms included here offer a visual understanding of the effect of the various

computations of the cepstral coefficients on the reconstructed speech. For comparison purposes,

spectrograms are also provided for the original speech signal (digitized at 8kHz), and the speech

signal as synthesized by STC. The effects of the tridiagonal and identity approximations are readily

apparent, as a significant amount of the vocal tract resonances are lost during the coding process

when these approximations are used in computing the cepstral coefficients.
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Figure A.3. Spectrograms of the original female utterance fedw.sal.8khz, the utterance as syn-
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coefficients computed using the method of this thesis(via the exact, solution to the
matrix equation Bc = y).
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